像面式全息根据全息学的理论,对于普通透射式全息显示图像而言,当再现光波长与记录时的光波长不同,或再现光源为非理想点光源而有一定的空间扩展时,再现像点将会发生弥散而变得模糊,由上述两种因素造成的像点模糊量皆与象点和全息板的距离成正比。因此,假如记录时让物点落在全息板上或很靠近于全息板,则用普通白光扩展光源再现时,像点的模糊量仍小至可接受的程度。因实际物体难以直接“嵌入”全息板,故人们采用将物体通过透镜成像于全息板的附近,同时引入参考光波与其干涉的办法来记录全息显示图像,这样记录的全息显示图像称为像面全息显示图像,它可用普通白光扩展光源再现。显然,这种全息显示图像的景深也是有限的,距全息板平面愈远的像点愈模糊不清。 数字全息技术的成像原理是,首先通过CCD等器件接收参考光和物光的干涉条纹场,由图像采集卡将其传入电脑记录数字全息图;然后利用菲涅尔衍射原理在电脑中模拟光学衍射过程,实现全息图的数字再现;最后利用数字图像基本原理再现的全息图进行进一步处理,去除数字干扰,得到清晰的全息图像。数字全息技术是计算机技术、全息技术和电子成像技术结合的产物。它通过电子元件记录全息图,省略了图像的后期化学处理,节省了大量时间,实现了对图像的实时处理。同时,其可以进行通过电脑对数字图像进行定量分析,通过计算得到图像的强度和相位分布,并且模拟多个全息图的叠加等操作。 由于全息再现象光波保留了原有物光波的全部振幅与相位的信息,故再现象与原物有着完全相同的三维特性。换句话说,人们观看全息像时会得到与观看原物时完全相同的视觉效果,其中包括各种位置视差,这即是全息三维显示的理论依据。从这种意义上来说,全息才是真正的三维图像,而上述的各种由体视对合成的图像充其量仅是准三维图像(并无垂直视差的感觉)。20世纪80年代后,激光全息技术的迅速发展,成为一种异军突起的**产业。在激光全息技术中,全息显示技术由于更接近于人们的日常生活而倍受关注。